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Tetrakis(trimethylsilylbutadiynyl)ethene, C18 (SiMe3 )4,
containing an extended two-dimensional (2-D) �-conjugated
carbon system has been prepared and characterized by spectro-
scopic and crystallographic methods.

Polycarbon systems associated with �-conjugated systems
are expected to display unique physical properties, which are po-
tentially applicable to materials science.1 The studies on 1-D
system (e.g. molecular wire) are followed by those on 2- and
3-D systems, which are relevant to carbon allotropes (e.g. graph-
ite, diamond, and fullerenes) and would lead to more sophisticat-
ed systems such as molecular switch based on the higher dimen-
sionality.2 Ethene and benzene are two representative structural
motifs 2-D of carbon systems (Chart 1) and their alkynylated de-

rivatives with extended �-systems have been synthetic targets.
Free polyethynylated species (R = H) are versatile precursors
but, because of their potential detonative property, silyl deriva-
tives (R = SiR0

3), which are readily deprotected in situ by treat-
ment with F� or base, are frequently employed as masked ace-
tylenes. Tetraethynylethenes (A1) including silyl derivatives
(R = SiR0

3) have been studied intensively by Diederich,2b–d

and preparation of B1,2-derivatives was reported by Vollhardt.3

Herein we wish to describe results of synthesis and characteriza-
tion of tetrakis(trimethylsilylbutadiynyl)ethene 1 [A2(R =
SiMe3)].

Tetrakis(trimethylsilylethynyl)ethene A1(R = SiMe3), the
ethynyl derivative of 1, mentioned above was prepared via dehy-
drogenation of the tetraethynylethane derivative2a or a reaction
sequence including Sonogashira coupling of Me3Si-C�C–H
with Br2C=C(C�C–SiMe3)2 at the final stage,2b but Low et
al. recently reported short-cut, direct Sonogashira coupling be-
tween Me3Si–C�C–H and tetrachloroethene.4

The title compound 1 [A2(R = SiMe3)] was prepared fol-
lowing the direct coupling method (Scheme 1). A NEt3 solution
of trimethylsilylbutadiyne 35a and tetraiodoethene 4 was stirred
for 24 h at ambient temperature in the presence of a catalytic
amount of Pd(PPh3)4 (20mol% based on 4) in the dark. The re-
sultant mixture was evaporated, extracted with ether and filtered
through a silica gel plug to remove salts. NMR analysis of the
resultant filtrate revealed formation of two products, which were
separated by silica gel column chromatography (eluted with pen-

tane). The desired product 1 was eluted as the second band and
isolated in 50% yield as yellow powders, and the by-product
eluted first was 1,8-bis(trimethylsilyl)-1,3,5,7-octatetrayne 2
(the dehydrogenative oxidative-coupling product of 3) as identi-
fied by comparison of its spectroscopic data with the reported
one.6 (CAUTION! Compound 1 could be purified by crystalliza-
tion from THF–MeOH or pentane. However, while handling a
crystallized sample, we experienced slow decomposition accom-
panying light emission, which formed black powders. The prep-
aration, therefore, should be carried out in a small scale, with sat-
isfactory protection, behind a safety shield, in a hood and with
great caution. The chromatographic separation followed by
evaporation gave a spectroscopically pure sample.) Use of tetra-
chloroethene instead of 4 did not give 1.

The new compound 1 is readily characterized on the basis of
its simple NMR features consistent with a D2h symmetrical
structure. A 1HNMR spectrum of 1 contains a single singlet sig-
nal for the SiMe3 groups [�H(CDCl3) 0.23 (36H)]. In a 13CNMR
spectrum, four alkynyl carbon signals are located at �C 72.3,
85.9, 87.3, and 98.9 in addition to the olefinic carbon signal
(�C 119.4) and the Me signal for the SiMe3 group (�C �0:4). Al-
though the olefinic signal is comparable to that for A1(R =
SiMe3) (�C 118.8),2b the alkynyl carbon signals of 1 are slightly
shielded compared with those of A1(R = SiMe3) (�C 101.0,
105.3) but appear in the range comparable to that for polyynyl
compounds such as X–(C�C)2–H [X = SiMe3: �C 68.9, 69.2,
83.1, 88.7;5a Fe(�5-C5Me5)(CO)2: �C 53.5, 71.9, 92.8, 105.4]7

and X–(C�C)4–X [X = SiMe3 (2): �C 62.1, 68.0, 87.8, 88.0;5a

Fe(�5-C5Me5)(CO)2: �C 51.4, 61.6, 94.8, 110.8].7 �C �C vibra-
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tions (KBr pellet) are located at 2204 (w), 2180 (w), and
2095 cm�1 (vs), and a molecular ion peak (m=z ¼ 508) is detect-
ed by FAB-MS.

Molecular structure of 1 is characterized by X-ray crystal-
lography (Figure 1).8 Because the molecule, in particular, the
central olefinic part, is disordered with respect to the C2 axis per-
pendicular to the olefinic plane, detailed discussion on the struc-
tural parameters cannot be made. But clear bond alternation for
single, double and triple bonds is apparent [C(01)–C(02):
1.397(6), C(01, 02)–C(n1): 1.438–1.449(7), C(n1)–C(n2):
1.181–1.194(6), C(n2)–C(n3): 1.369–1.384(6), C(n3)–C(n4):
1.190–1.217(6), Si–C(n4): 1.821–1.852(5) �A (n ¼ 1{4)] and
therefore delocalization is not so significant. The molecule is es-
sentially planar as can be seen from a side view (Figure 1b).9 The
dimension of the �-conjugated polycarbon system is as large as
a square of the side of ca. 10 �A [Si1���Si2: 10.97, Si1���Si4:
10.17 �A] and the carbon chain consisting of ten carbon atoms

spans two silicon atoms separated by the distances of 14.94 �A
(Si1���Si3) and 14.95 �A (Si2���Si4).

The characteristic UV–vis absorptions of A1(R =
SiMe3)

2a,b in longer wavelength region are shifted to lower ener-
gies by ca. 70 nm upon replacement of the C2 linkers by the C4

linkers (1) clearly indicating an extension of the �-conjugated
system (Figure 2).

In summary, tetrakis(trimethylsilylbutadiynyl)ethene with
an extended �-conjugated system consisting of 18 carbon atoms,
1 [A2(R = SiMe3)], is prepared and fully characterized.10 Com-
pound 1, which can be readily functionalized, should serve as a
component for architecture of higher order carbon networks.
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Figure 1. ORTEP views of 1 drawn with thermal ellipsoids at
the 30% probability level. (a) an overview. C01a, C02a: minor
components of the disordered structure.8 (b) a side view of the
core part.
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Figure 2. UV–vis spectra of 1 and A1(R = SiMe3) observed in
hexane.
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